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We analyse the dilute, steady, fully developed flow of relatively massive particles in 
a turbulent gas in the context of a vertical pipe. The idea is that the exchange of 
momentum in collisions between the grains and between the grains and the wall 
plays a significant role in the balance of forces in the particle phase. Consequently, 
the particle phase is considered to be a dilute system of colliding grains, in which the 
velocity fluctuations are produced by collisions rather than by the gas turbulence. 
The balance equations for rapid granular flow are modified to incorporate the drag 
force from the gas, and boundary conditions, based on collisional exchanges of 
momentum and energy at  the wall, are employed. The turbulence of the gas is treated 
using a one-equation closure. A numerical solution of the resulting governing 
equations provides velocity and turbulent energy profiles in agreement with the 
measurements of Tsuji et al. (1984). 

1. Introduction 
Gas-solid flows satisfy the principles of mass, momentum and energy balance. 

While the Navier-Stokes equations govern the motion of the gas phase, there is not 
yet universal agreement upon the way of incorporating the particle phase. One 
approach is to treat this phase as a continuum and use some form of averaging to 
obtain the balance laws. Then, depending on the situation, the fluxes and sources of 
momentum and energy for the particle phase are modelled in order to close the 
system of equations. 

For small particles, dilute in a turbulent gas, momentum transfer in the particle 
phase is due to turbulent diffusion of the particles. In this regime, Elghobashi & 
Abou-Arab (1983) have derived a two-fluid k-s closure that relates the Reynolds 
stress of the particles to gradients of the mean particle velocity using an eddy 
viscosity that is a fraction of the eddy viscosity of the gas. This analysis predicts the 
reduction of turbulent energy observed in the presence of small particles (e.g. 
Modaress, Tan &, Elghobashi 1984). Other works in this regime include those of 
Pourahmadi & Humphrey (1983), Chen & Wood (1985) and Berker & Tulig (1986). 
However, these analyses do not apply to flows with massive particles. 

For massive particles, the experiments of Soo, Ihrig & El Kouh (1960) show that 
the intensity of the particle velocity fluctuations may exceed that of the fluid, an 
observation that cannot be explained if the particles respond only to the turbulence. 
Min (1967) attributes this high particle 'turbulence ' to particle-wall collisions. 
Lourenco, Riethmuller & Essers (1983) also focus attention on collisions when 
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predicting profiles of density and gas and particle velocities in a 10 cm wide 
horizontal duct loaded with 500 pm glass particles. By analogy with molecular 
dynamics, these authors introduce a particle velocity distribution function that, they 
assume, is determined as a solution of a Boltzmann transport equation by particle 
collisions, rather than by the gas turbulence. In other words, they assume that the 
gas influences the mean velocity of the particles, but that it has no effect on their 
random motion. In  their work, this assumption is justified, because the ratio of 
particle relaxation time to a typical large-eddy turbulent timescale is large (Hinze 
1972). Sinclair & Jackson (1989) have recently presented a model for vertical 
gas-solid flow in a pipe that also treats the particle phase as a rapid granular flow. 
They produce a surprising variety of flow regimes in the context of the model. 
However, they ignore the gas turbulence and, consequently? do not distinguish the 
regimes in which collisions dominate the interactions of particles with the turbulent 
eddies. Neither do they attempt a quantitative comparison of their results with 
experimental data. 

Here, a more detailed analysis of dilute gas-solid flow in a vertical pipe is 
undertaken. Particles are assumed to be sufficiently massive to be unaffected by the 
turbulent velocity fluctuations of the gas. The particle phase is treated as a rapidly 
flowing granular material in which momentum and energy are transferred by the 
velocity fluctuations of the particles. The momentum balance for rapid granular flow 
given, for example, by Jenkins & Savage (1983) is modified to include a drag term 
that provides the force necessary to suspend the particles and the corresponding 
energy balance includes rates of production and dissipation associated with 
interactions between the particles and the gas. Finally, the turbulence of the gas 
phase is treated using a one-equation closure. 

Here, we focus on fully developed, steady flows. This assumption is crucial to  the 
analysis for i t  permits us to  carry out averages for both the gas and particle 
properties on long vertical strips. For the gas, we equate these with ensemble 
averages or with the time averages determined in the experiments. For the particles, 
we assume that they are equivalent to averages based on a velocity distribution 
function. Then, no matter how dilute the flow, the control volumes can always 
include a large enough number of particles to define the appropriate averages, so the 
dispersed particles may be regarded as a continuum. 

We obtain numerical solutions of the resulting balance laws, constitutive relations 
and boundary conditions and compare these with the experimental profiles of 
particle velocity, gas velocity, and turbulent gas fluctuations reported by Tsuji, 
Morikawa & Shiomi (1984). The agreement of this data with the results of the 
analysis suggests that  particle collisions play an important role in flows involving 
relatively massive particles, even when the particle phase is rather dilute. 

2. Hydrodynamics 
I n  this section, we outline the hydrodynamics for dilute, fully developed, steady 

flow in a vertical pipe of relatively massive particles of uniform diameter d .  We focus 
on particles massive enough to be unaffected by the velocity fluctuations in the 
turbulent gas. In other words, the hydrodynamic relaxation time of the particle 
velocity fluctuations is much greater than a typical roll-over time of the turbulent 
eddies that is based on their integral lengthscale 1 and their root-mean-square (r.m.s.) 
turbulent velocity u’. 
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2.1. Particle phase 

In  the regime of interest, particles are suspended by the drag force exerted by the 
mean gas flow, but their velocity fluctuations are the result of collisions with other 
particles or with the wall. For the particle phase we adopt the assumption of 
molecular chaos central to the treatment of collisions in rapid granular flows (Jenkins 
6 Savage 1983) and we assume that interparticle collisions are nearly elastic and 
frictionless. For the conditions of Tsuji et al. (1984), the product of the collision 
frequency and the hydrodynamic relaxation time of the velocity fluctuations varies 
between 3 and 230. Consequently, a particle loses only a small fraction of its 
fluctuation energy in and between collisions, so the velocity distribution function for 
the particles is nearly Maxwellian. 

2.1.1. Momentum 
With these assumptions, well-established results from the kinetic theory of gases 

lead to constitutive relations for the pressure and shear stress in the particle phase 
(Chapman & Cowling 1970). The resulting momentum equation for the rapidly 
flowing particles is then modified to incorporate the drag force from the gas and the 
gravitational force : 

where ut and vi are the average gas and particle velocities, p is the gas pressure, gr is 
the gravitational acceleration, E is the voidage, pp is the material density of the 
particles, T is the hydrodynamic relaxation time of the mean relative velocity (slip 
velocity) between the phases, and 

is the total stress transmitted through the particle phase. The particle pressure N is 
related to the particle volume fraction (1 - E )  by an expression analogous to an 
equation of state in a molecular gas: 

N = p , ( l - - s ) @ ,  (3) 

where 0 is the ‘granular temperature’, expressed in terms of the r.m.s. particle 
velocity fluctuations 2r’ as g0 = @ 2 .  In these dilute flows, terms in the momentum 
exchange between the phases that are proportional to the gradient of the voidage are 
neglected. 

For fully developed, axisymmetric flow, the momentum balance in the vertical 
direction reduces to 

i d  P 0 = - - (rS) + 2 (1 - 8 )  (u - v) - pp( 1 - E )  g, 
r dr T (4) 

where u and v are the vertical components of the mean gas and particle velocities, r 
is the radial coordinate and S, the particle shear stress on surfaces at  constant radius, 
is given through (2) by 

12 FLM 231 
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In this simple flow, the particle momentum balance in the radial direction becomes 

a / d r  = 0, (6) 

so that N is constant across the pipe. 
For the very dilute flow of relatively large particles, the length h of the mean free 

path between collisions may be comparable to the radius R of the pipe. In this case, 
the transport of particle momentum is similar to that in the free-molecule regime of 
gas dynamics and, by analogy with the heuristic treatment of shear stress in Couette 
flow there (e.g. Vincenti & Kruger 1977), so we adopt the following correction for S : 

5x4 idv 1 S = - p  d o % - -  
96 ’ dr 1+A/R’  (7) 

where h = d / [ 6 2 / 2 ( 1  -€)I. Unlike (4, this expression for shear stress approaches zero 
as (1 - E )  vanishes, so that (4) remains valid in this limit. 

The hydrodynamic relaxation time T of a particle is defined in terms of the drag 
force on one particle by 

where p is the gas density. For the drag coefficient C,  we adopt the empirical 
expression 

24 
- Re, 

G - -(1+0.15Rek687), (9) 

which is valid in the range 0 < Re, < 800, where Re, = Iu - v1 pd/p is the Reynolds 
number based on the average slip velocity between the phases and p is the viscosity 
of the gas (Clift, Grace & Weber 1978). 

2.1.2. Energy 
In order to close the equations describing the particle phase, an energy balance is 

written for the determination of the granular temperature 0. Following Jenkins & 
Savage (1983), it is 

3 ao ao aqi avi 
at axi axi i*axj 

g ~ ~ ( l - ~ ) - + + , ( l - ~ ) ~ t -  = --+S - -D 1 - D  29 

where qt is the diffusive flux of particle fluctuation energy, given by kinetic theory 
as 

and D,  and D2 are rates of dissipation per unit volume due, respectively, to the 
inelasticity of the particles and to their interaction with the gas. 

The second term of the right-hand side of (10) is the working of the stress through 
the mean particle velocity gradient. In the dilute limit, D,  is given for nearly elastic 
particles as 
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where e is the coefficient of restitution for a particle-particle collision (Jenkins & 
Savage 1983). The expression for D ,  is obtained by considering the kinetic energy lost 
in each collision, then averaging over all possible collisions. 

The rate of energy dissipation per unit volume D, results from the working of the 
fluctuating force exerted by the gas through the fluctuating velocity of the particles. 
This fluctuating force includes a drag component associated with the slip velocity 
and a Basset component that arises from the rapid variation of the slip velocity with 
time. A calculation of the Basset component indicates that in the experiments of 
Tsuji et al. (1984) it is a t  most 20% of the drag component. Upon ignoring its 
contribution, D, may be written as 

D, = - (p,/T) (1 -€) v;(u;-v;) = - (p , /T )  (1 -€) (u ; -38 ) ,  

where primes indicate fluctuating velocities and the overbar denotes the average. 
The term a is the correlation between the velocity fluctuations of the gas and 

those of the particles. Koch (1990) has recently calculated this term for a dilute 
gas-solid suspension at very low particle Reynolds number in the limit where solid- 
body collisions determine the particle velocity distribution function. He finds that 

where T, is the Stokes relaxation time. In the experiments of Tsuji et al. (1984), the 
Reynolds number based on the r.m.s. fluctuating slip - velocity lies well above one. In 
this regime there are no theoretical prediction for u;vi. In this case we adopt the 
functional form given by (13) but use the relaxation time given by the analogue 
of (8) based on the r.m.s. fluctuating slip velocity between the two phases. This 
extension of Koch’s expression is analogous to the extension of the Stokes drag 
coefficient to other than low particle Reynolds number. In the situations considered 
here its contribution is typically dominated by other terms. 

For fully developed, axisymmetric flow, (10) becomes 

where 

I d  dv 
r dr dr 

0 = - - - ( rq )+S- -Dl -D2 ,  

To treat the very dilute flow of large particles, we modify this expression using a 
correction similar to that in (7 ) :  

25d id@ 1 q = - -pPpd@- ~ 

128 dr l+h/R’  

2.1.3. Boundary conditions 

Boundary conditions for the particle phase have been calculated by Jenkins (1991) 
who considers collisions of inelastic frictional spheres with a frictional wall. For 
relatively small values of the coefficient of sliding friction pf, the resulting tangential 
momentum balance and the balance of energy are, respectively, 

S = - p f N  (15a) 

and 
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where e, is the coefficient of restitution for a particle colliding with the wall. These 
relationships have been derived based on the assumption that the coefficient of 
friction is so small that the point of contact of a particle always slips during a 
collision. 

Finally, because the flow is axisymmetric, the boundary conditions a t  the 
centreline of the pipe are that S and q vanish there. 

2.2. Gas phase 
2.2.1. Momentum 

In  our treatment of the fully developed, steady particle flow, we considered a 
control volume of infinitesimal width but arbitrary extent in the vertical direction 
and assumed that the velocity distribution function depended only upon the radial 
position of the control volume. Further, we restricted attention to particles that are 
too massive to  be affected by the turbulent velocity fluctuations; their velocity 
fluctuations are governed by a velocity distribution function f ( v ,  x, t ) .  The particle 
volume fraction (1 - e) is related to this velocity distribution function by 

v ,  x, t )  du = (1  -e)/@) d3.  sslf( 
In  the flow under consideration f and, consequently, e are independent of time, so 
e' = 0. Thus, a Reynolds decomposition of the momentum equation leads to 

and 

respectively , 
We adopt a closure of the Reynolds stress based on the eddy viscosity pt:  

- 
where k = $&u; is the turbulent kinetic energy per unit mass of the gas. The eddy 
viscosity is assumed to be given by the one-equation closure described, for example, 
by Reynolds (1976) : 

where 1 is the turbulent mixing length and C, = 0.49. Following common practice in 
pipe flow, we assume that near the wall the mixing length is proportional to the 
distance from the wall and that near the centre of the pipe it is constant: 

pt = C,pkil, (19) 

- = {  1 ~ ( 1  -r /R) ,  r/R 2 0.7 ; 
R 0 . 3 ~ ,  r / R  < 0.7, 

where K = 0.41 is von KdrmLn's constant. 

becomes 
For axisymmetric, steady, fully developed flow, the vertical component of (16) 
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where r,, = (y+yt) duldr and z is the upward vertical coordinate. The corresponding 
radial component is 

- - 
where r,, = -puL2 and 708 = -puA2. Using (if$), we find that 

- -  
pui2 = puA2 = &k. 

Consequently, the radial component is 

We do not require a solution to (22) ; from it, it follows that a(sp)/az is a constant 
independent of r and z in fully developed flow. 

2.2.2. Kinetic energy 
The balance of turbulent kinetic energy is obtained by multiplying the 

instantaneous gas momentum equation by u;, taking the time average of all terms, 
and subtracting the energy equation for the mean flow. For steady flows involving 
massive particles the resulting equation reduces to eleven terms : 

We adopt the closures proposed by Elghobashi & Abou-Arab (1983) for the velocity 
and pressure correlations. In particular, we use (18) for the Reynolds stress and a 
gradient diffusion model for the turbulent transport of k : 

u;u; - yt ak 
psd- - €- -, 

j 2  rk axj 

where gk is a turbulent Prandtl number appropriate for the diffusion of k. Following 
common practice we assume that ck = 1. We ignore a counter-gradient diffusive flux. 

In fully developed, axisymmetric flow, (23) simplifies to 

where E = (y/p) au; au;/axj axj is the isotropic turbulent dissipation rate. 
The first term of (25) represents the turbulent and viscous diffusion of k. The 

second term is the rate of production of k by the working of the mean shear. Because 
the particles modify the mean gas velocity profile through the drag term in (21), they 
affect the gas velocity gradient and, through the second term in (25), the production 
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of k.  The third term is the isotropic dissipation of k.  For dilute conditions, it is closed 
as described by Reynolds (1976) : E = C, kil l ,  where C, = CE. The fifth and sixth 
terms are the work of turbulent pressure fluctuations. The next three terms are 
viscous dissipation terms. According to Hinze (1975), the relative pressure 
fluctuations p ' /p  are a t  least an order of magnitude smaller than the relative velocity 
fluctuations u'/u. Because the fifth term is much less than order epu13/R, which is 
itself smaller than the turbulent diffusion term of order ~ p u ' ~ / l ,  it is negligible. 
Because the last four terms involve the average voidage gradient aepr ,  which is of 
order (1  -e)/R, in dilute flow they may be ignored. With these simplifications, (25) 
becomes 

(26) 
O = - -  re -+,u - +pte - du - p e E - - ( l - e ) ( 2 k - u ; ) .  P 

t i r {  (c: )$} (dr) T 

Our experience in analysing the experiments of Tsuji et al. (1984) is that the 
production of turbulent kinetic energy is dominated by the working of the mean 
shear, and that its dissipation is primarily governed by the isotropic dissipation rate 
E .  

2.2.3. Boundary conditions 
Because the closure outlined above is not valid in the viscous and buffer layers, 

boundary conditions for the gas phase at the wall are enforced at a dimensionless 
distance y+ = p(R - r )  u*/p x 30 from the wall. The parameter u* = (mo/p)i is the 
shear velocity, where T~ is the gas shear stress a t  the wall. In the dilute flow, we 
assume that the gas velocity profile near the wall is not greatly affected by the 
presence of the particles. In this case, the gas velocity at small values of y+ is given 
by the universal 'law of the wall ' : 

- (51ny+-3, 5 <  y+<30 ;  
-- 
u* \ ( l /~) lny++5.7 ,  y+ 2 30. 

The shear velocity is calculated from a global momentum balance obtained by 
adding the momentum balances of the gas and particle phases and integrating 
between r = 0 and r = R :  

a(ep)/az = -2p~*~/R+2S,/R-gp,(l  -C),  (28) 

where So is the particle shear stress evaluated at  the wall and E is the average voidage 
across the pipe. 

For the turbulent kinetic energy, we take the boundary condition at the wall to be 

a k p r  = 0. (29) 

Provided that the molecular viscosity ,u is much smaller than the eddy viscosity ,ut 
(a condition typically met for y+ x 30), this condition is equivalent to equating the 
production and dissipation of turbulent kinetic energy. In particle-laden flows, 
unlike pure gas flows, equating the production and the dissipation of k at the 
boundary does not yield a straightforward algebraic expression for k because of the 
last term of (26). In this context, (29) is as exact and more convenient than specifying 
a value for k at the wall in terms of u*,. 

The system of equations (21) and (26) was first solved for pure gas (8 = 1) subject 
to the boundary conditions (27)-(29) at  the wall and the requirement that the radial 



1.0 

!L 0.5 
4 I 

353 
l ~ l ~ l f l ~ l  

P ; 

c 

- - 

.- - 

, I , I l I I I , .  

0 0.2 0.4 0.6 0.8 1 .o 
r lR 

FIQURE 1.  Calculated profiles of (a) gas velocity u and ( b )  r.m.s. gas velocity fluctuations u' for clear 
gas, normalized by the centreline gas velocity u,, = 13.4 m/s. The solid circles represent the data 
of Tsuji et al. (1984). 

derivative of u and k vanish at  the centreline. As indicated in figure 1, the predicted 
profiles of gas velocity and turbulent kinetic energy are in satisfactory agreement 
with the measurements of Tsuji et al. (1984) despite the rather rudimentary 
turbulence closure used. In addition, the predictions of the skin friction coefficient at  
the wall, f E 2~~/p ' iZ* ,  are within 10 Yo of the Blasius correlation for a smooth pipe, 
f = 0.079Re-i, where Re is based on the pipe diameter and the average gas velocity 
fi over the cross-section. 

3. Results and discussion 
In this section, we compare the detailed measurements of Tsuji et al. (1984) with 

the predictions of our analysis. Using a laser-Doppler anemometer, these authors 
measured the profiles of mean gas velocity, mean particle velocity, and gas velocity 
fluctuations in a vertical pipe of 30.5 mm diameter under fully developed, steady 
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FIQURE 2. Calculated profiles of normalized gas velocity u/uc, and particle velocity v/uC1 for 
relatively dilute flows of (a)  200 pm and (b )  500 pm particles. The solid and open circles represent 
the data of Tsuji et aE. (1984) for gas and particle velocities, respectively. The dashed lines represent 
particle velocities predicted by an analysis that would ignore particle shear. The conditions are : ( a )  
u,, = 18.9 m/s, m = 1.0; and ( b )  uC1 = 9.65 m/s, m = 1.1.  

flow. I n  these experiments, polystyrene spheres with density p p  = 1020 kg/m3 and 
diameters in the range 200 pm to 3 mm were suspended in air. Ratios of particle-to- 
gas mass flow rates m (loading) were as high as 3.6. For these conditions, the 
hydrodynamic relaxation time of the particles is between 60 ms and 850 ms, while 
the slowest turbulent timescale is of order R/u - 2 ms. Clearly, the particles cannot 
follow the gas turbulence. 

The system of ordinary differential equations (3), (4), (6), (14), (21), (26) and 
boundary conditions constitutes a nonlinear, coupled, two-point boundary-value 
problem. We solve this system numerically using the quasi-linearization method of 
Bellman & Kalaba (1965). I n  the calculation we assume a coefficient of restitution 
e = 0.9 for particleparticle collisions, e,  = 0.7 for particlewall collisions, and a 
coefficient of dynamic friction pf = 0.2 between a particle and the wall. The 
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FIGURE 3. Calculated profiles of normalized r.m.s. gas velocity fluctuations u’/uC1 for relatively 
dilute flows. The solid circles represent the data of Tsuji et al. (1984) for 200 pm particles, u,, = 
12.8 m/s, m = 1.3; the open circles are 500 pm particles, uCI = 13.3 m/s, m = 1.3. The solidland 
dashed lines are the respective predictions of the analysi?. We predict (1 -6)  = 0.16% and @/uCl 
zs 1.8 YO for 200 pm particles and ( 1  -e) = 0.18% and @l/uc, x 2% for 500 pm. 

coefficients of restitution are consistent with the observations of Govan, Hewitt & 
Ngan (1989), who filmed the trajectories of glass spheres transported in a small pipe 
under conditions similar to those of Tsuji et al. (1984). For particle-wall collisions, 
these authors estimated that 0.52 < e, < 0.95. 

In particle-laden flows, two parameters determine the operating conditions, i.e. 
gas velocity and solid loading. Rather than specifying these values a t  the onset of the 
computations, it was more convenient to input to the program the overall pressure 
gradient and the particle volume fraction at  the wall. These were iterated until the 
gas velocity at  the centreline and the loading were within 1 % of the measured values. 

Figures 2 to 5 compare the measurements of Tsuji et al. and the predictions of our 
analysis for a range of particle diameters and loadings. Note that the predicted 
particle velocity at  the wall is positive. Comparable observations were made by Lee 
& Durst (1982) in a similar situation. A t  first sight, these observations might be 
surprising. Because the gas velocity is zero at the wall, one might expect the particles 
to fall. In fact, there is a region near the wall where the particles can acquire a 
velocity higher than that of the gas. This effect is due to the shear stress in the 
particle phase. Particles further from the wall are lifted by the gas and, through 
collisions, transfer momentum to particles closer to the wall. In figures 2 and 5 ( a ) ,  
the dashed line represents the prediction of an analysis that ignores this shear stress 
in the balance of forces for the particle phase. Such a treatment clearly fails to 
reproduce the observed particle velocity profile. Therefore, stresses in the particle 
phase are essential for an accurate description of the flow. In addition, because the 
loading is proportional to the average product of the particle velocity and volume 
fraction across the pipe, the agreement of the calculated particle velocity with the 
measured values suggests that equations (3) and (6) adequately predict the particle 
volume fraction, at least with respect to the mean. 

Figure 3 compares the measured and predicted r.m.s. velocity fluctuations for 
200 pm and 500 pm particles at  relatively low particle loadings. The present analysis 
predicts correctly the magnitude of the r.m.s. velocity fluctuations and the trend 
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FIQURE 4. Calculated profiles of (a) u/ucl, v/ucl, and (b) u'/uCl for relatively dense suspensions of 
200 pm particles. In (a), the solid circles represent the data of Tsuji et al. (1984) for u/uCl and the 
open circles are the data for v/uC1. In (b), the solid circles are the data for u'/u,,. The solid lines are 
the prediction of the analysis. The conditions are: (a) uCl = 14.6 m/s, m = 4.2; (b) u,, = 10.8 m/s, 
m = 3.2. For ( b ) ,  we predict ( l -c)  = 0.43% and @Z/u,, x 1.8%. 

towards larger fluctuations for larger particles. Figures 4 and 5 concern the largest 
particle loadings considered by Tsuji et aE. (1984) for 200 pm and 500 pm particles. 
Here, the mean velocities are well predicted by the analysis, but the r.m.s. velocities 
are underpredicted near the centreline of the pipe. In this case it may be desirable to 
refine the turbulence closure of equations (18)-(20) to obtain a better agreement with 
the measured gas velocity fluctuations at  higher particle loadings. 

Figure 6 compares our predictions of the total pressure gradient - a ( q ) / a z  with 
the measurements of Tsuji et al. (1984). Despite the crudeness of the turbulence 
closure, the predictions of equation (28) are within 15% of the measured values. For 
these conditions, the contribution of the particle weight gp,(l-E) to the total 
pressure gradient is relatively small ( z 2 0 % ) ,  and that of the particle shear stress 
- 2S/R is even smaller ( z 8 %). 
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FIQURE 5. Calculated profiles of (a) u/u,,, v/u,, and (b) u'/uc, for relatively dense suspensions of 
500 pm particles. Symbols have the same meaning aa in figure 4. The conditions are: (a u,, = 

2.2 Yo. 
8.07 m/s, m = 3.6; and (b) u,, = 10.7 m/s, m = 3.4. For (b), we predict (l--E) = 0.5% and 8 1 /u,, x 

Unfortunately, our predictions of the profiles of granular temperature 0 cannot be 
compared with the experiments of Tsuji et a,?. (1984), who did not measure the 
particle velocity fluctuations or the concentration of the particle phase. Such 
measurements would add considerably to the understanding of this flow regime. In  
particular, they would help clarify the form of thexr t ic le  velocity distribution 
function, aa well as the nature of the correlation uiw;. If such experiments are 
undertaken, we recommend that the coefficients of restitution e and e,  and the 
coefficient of sliding friction p, be reported, because these values affect the magnitude 
of the granular temperature 0. 

Our experience in analysing the experiments of Tsuji et al. (1984) is that the mean 
velocity profiles and the gas velocity fluctuations are rather insensitive to the actual 
values of the coefficients of restitution. In contrast, because the coefficient of friction 
governs the magnitude of the particle shear at the wall and the flux of granular 
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FIGURE 6. Calculated versus measured fully developed pressure gradient -i3(ep)/az x -+/az for 
500 pm particles. The circles are the total pressure gradient predicted by equation (28). The 
triangles represent the predicted contribution of the particle weight. The squares are the sum of the 
contributions of the gas shear and the particle weight. The total particle mass flow rate is 0.03 kg/s. 
The mean gas velocities are, from left to right, ii = 11.6, 13.0, 14.8, and 117.2 m/s. For these 
conditions, we predict, respectively, (1 - E )  = 0.39,0.35,0.30, and 0.25 % and @/u,, x 1.8, 1.7, 1.6, 
and 1.4%. 

energy, it has a strong influence on the flow over a range of particle diameters. For 
example, for typical conditions (500 pm polystyrene particles, u = 10 m/s, m = l ) ,  
the total predicted pressure gradient rises sharply above ,uf x 0.33. These 
observations suggest that  the boundary conditions of the particle phase play an 
important role in the flow. 

Finally, our analysis predicts the behaviour of the vertical pressure gradient 
observed in pneumatic transport lines. At constant loading, the predicted fully 
developed pressure gradient first decreases with gas velocity. Here the gas shear 
2 p ~ * ~ / R  is the dominant term in equation (28). However, as the gas velocity 
decreases, the particle volume fraction must increase to maintain the constant 
loading, so that the weight of the particle phase becomes increasingly important. 
Eventually, the particle weight dominates equation (28) and the total pressure 
gradient increases with decreasing gas velocity. Eventually the suspension can no 
longer be sustained and the ‘choking’ occurs. It is interesting to note that, for the 
dilute flows under consideration, the particle shear predicted by the analysis plays a 
relatively minor role in the total pressure gradient, despite its importance in the 
predictions of the particle mean velocity profiles. 
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